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Star-unitary transformations, of the type developed by I. Prigogine and his 
group, are used to study the pulse excitation and subsequent decay of a single 
atom coupled to the electromagnetic field. A systematic perturbation scheme is 
proposed for atomic properties, valid without limitation of time scale or 
strength of pulse irradiation, provided that the total duration of the pulses is 
shorter than the radiative lifetimes. In the absence of irradiation, Bloch-like rate 
equations are obtained as an exact result (in the "thermodynamic limit" of a 
large box enclosing the field). 
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1. I N T R O D U C T I O N  

As a tribute to our  very dear friend and colleague Prof. I. Prigogine, we 
present here a progress report  on work we have under taken to apply the 
ideas on irreversible N-body  dynamics  developed by him and his group 
(see, e.g., Refs. I 3) to simple problems of direct experimental interest in 
single-atom pulse spectroscopy. We share the enthusiasm expressed by 
Rosenfeld (see Ref. 4, pp. 563-564) for the power  and usefulness of  these 
ideas, and we feel that  the extensive investigation of  issues of principle on 
very simple models has generated a theoretical tool  that  should now be 
confronted with actual experiments. 

Atomic  spectroscopy combines many  favorable features for such a 
comparison.  Even a single fixed a tom shows the essential irreversible 
process of spontaneous  emission. The corresponding Hamil tonian  is par- 
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ticularly simple and has been studied in detail. Clean measurements can be 
made on the electromagnetic field at a large distance from the atom, by 
recording the time of each successive photoelectric event. A variety of time- 
dependent properties of the field are accessible by correlating these 
detection times among themselves, and by shining additional "reference" 
radiation on the photodetectors. Pulse techniques enable one to perform 
transient experiments in which time itself is the variable of interest on a 
scale that ranges continuously from much shorter to much larger than the 
characteristic time of spontaneous emission. In the overall theoretical 
description of such experiments, irreversibility manifests itself at least in 
two places: in spontaneous emission by the atom and also in the 
measurement process (photoelectric detection in the present case). We shall 
not discuss this latter problem here, however. 

The model we shall use in the present paper has already been 
discussed in detail in a previous publication (5) in which we also examined 
some of its short-time properties. In brief, the time-independent 
Hamiltonian describes a fixed, bound atom interacting with the elec- 
tromagnetic field and the initial condition describes the atom in the dressed 
ground state of the coupled atom-field system together with an 
approaching pulse of coherent radiation that will hit the atom later on. 
This model is summarized in Section 2, using a superoperator presentation 
convenient for our present purpose. 

In Section 3 we briefly recall the main features of the nonunitary A 
transformation, showing in some detail how the standard procedures can 
be adapted to our somewhat unconventional model. 

Finally, in Section 4 we derive a hierarchy of equations of motion for 
variants of the reduced density operator for the atom and a finite number 
of field modes. In the absence of irradiation (i.e., before and after 
irradiation), the equation of motion for the atom alone is in closed form 
and displays the expected decay of population from higher to lower lying 
eigenstates of the atomic Hamiltonian together with damped oscillations of 
the off-diagonal matrix elements at the Lamb-shifted Bohr frequencies of 
the atom. We emphasize the fact that these typically irreversible rate 
equations have been obtained as an "exact" result, with no approximation 
besides the "thermodynamic limit" of large volume of the "box" enclosing 
the field that is inherent in the A transformation used throughout. The 
situation is less simple during the periods of irradiation, because the whole 
hierarchy of equations has to be dealt with. However, we show how a 
systematic perturbation scheme can be developed for pulse spectroscopy, 
with no limitation on time scale or intensity of irradiation, provided that 
the total duration of the pulses is shorter than the radiative lifetimes. 

In conclusion, we have shown on a simple example that the star- 
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unitary transformations developed by ]. Prigogine and his group do 
provide a tool for predicting the behavior of Hamiltonian systems of 
experimental interest. The results obtained so far are "exact" confirmations 
of rate equations derived already using a combination of quantum 
mechanics, neglect of "small" terms, and heuristic arguments. We hope that 
new and unexpected predictions will be made, perhaps for experiments 
involving multiple photoelectric detection. 

2. D E S C R I P T I O N  OF THE M O D E L  

2.1. Notat ion  

We have found desirable to keep the convenience and clarity of the 
"ket" and "bra" notation used, e.g., in Ref. 6 when going over to the presen- 
tation of quantum mechanics in terms of operators and superoperators 
required for our present purpose. 3 To each operator A we associate a 
superket tA ), which is an element of a linear vector space. The association 
is linear. To each superket ]A), we associate a superbra (A] using the 
trace metric ( A I B ) = T r { A * B } .  This association is antilinear. A 
superoperator Y associates a superket ] B ) =  2U ]A) to any superket rA). 
This association is linear. In many cases the relevant operators will be of 
the type A = ]b)~ct, where ]b) and (cJ are conventional kets and bras, 
and we shall use the notation [A) = I ( I b ) ( c j ) )  = Ib, c )  and (A]-=- (b, ct. 
No ambiguity results from using the same typography for kets and 
superkets, because ket labels and operators are always distinct objects. 
Unit operators will be denoted by 1 and unit superoperators by 1. 

Whenever useful, we shall explicitly indicate the relevant state space 
for the various quantum objects (kets, operators, etc.) using a subscript A 
for the bare atom, F for the free field, S for the atom-field system, and k for 
the single mode k of the field (the operators ak* and a k will be tacitly exten- 
ded to the whole field space whenever necessary). 

2.2. Liouvill ian and Sketch of  Initial Condi t ion 

The model, which is presented in detail in Ref. 5, consists of a time- 
independent Liouvillian (or Hamiltonian) and a dynamical initial con- 
dition. The Hamiltonian operator H s describes a bare and bound atom at 
a fixed position in space, the complete electromagnetic field, and an a tom-  

3 For a different presentation of the superoperator formalism, see, e.g., Refs. 1 and 7. 
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field coupling 2 V  s, which we shall assume to be linear in the field for 
simplicity: 

H s  = HoA | IF+  1A | HOFq- ~,Vs (2.1) 

HoA = ~ hooi l i ) ( i l  (2.2) 
i 

HOF = E ho)ka*~ak ( 2 . 3 )  
k 

2Vs= 2 ~ , ~  {Vi, jk ] i ) ( j ]  ak+vik,~ L i ) ( j l  a~} (2.4) 
k i j 

where )~ is introduced for further use as a perturbation parameter, i labels 
the eigenstates of the bare atom Hamiltonian, and i = 1 denotes the ground 
state (assumed to be nondegenerate); ak and a~, are the usual boson 
annihilation and creation operators, and the Hermiticity of V implies that 
vi,/k = (vjk,i) cc. 

The Liouvillian superoperator L s  is given by 

L s =  [ H s ,  .] = H s x  1 s -  l s x  H s (2.5) 

where the superoperator A x B is constructed from the operators A and B 
by requiring that, for any operator C, ( A x B )  k C ) = [ A C B ) .  The 
Liouvillian will be written as 

where 

L s  = Los + 2 6L s (2.6) 

Los = LoA @ 1 F -~- 1 A | LOF 

LoA = HOA • 1A -- 1 A x HOA 

LOF = HOF X 1 F - -  1 F X HOF 

)~ 6Ls  = 2Vs  x 1 s - 1 s x 2Vs  

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The initial condition, which will be discussed at the end of Section 2.4 
is a consistent quantum mechanical description of the naive idea in which 
the atom and the field in its vicinity are in the exact ground state of the 
coupled atom-field problem, whereas the distant field contains a (perhaps 
large) quasiclassical excitation which will interact with the atom later. In 
the absence of the atom, the quasiclassical state of the field is completely 
specified by the classical (i.e., quantum averaged) fields c~Ec~(r, t) and 
eBcl(r, t), or by the set of coherent state parameters c~k(t) for all field 
modes k. The (real) parameter c~ has been introduced here for further use in 
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perturbation expansions. When the classical field is known [and sym- 
bolized by c~fol(t)], the corresponding quasiclassical state of the field can be 
written as 

I~f~,(t) )F = MF(afd(t))  I0)F (2.1 1) 

where the unitary "displacement operator" MF(~fo6t)) is given by 

MF(C~fcI(t)) = I-[ exp[c~c~k(t) a~ -- c~c~ ~ ak] (2.12) 
k 

and ]0)F is the ground state of the bare field. We shall use the short-hand 
notation MF(t) for MF(c<fol(t)), and denote by 

JCdF(t) = J~F(c~fo,(t)) = MF(~fc~(t)) X M*F(~fd(t)) (2.13) 

the unitary superoperator constructed from MF(t ) and M*F(t ). The 
quasiclassical state of the free field (2.11) can be described by the density 
operator 

pF(t) = ]C~fc~(t))vv ~c~f~l(t)l = MF(~fd( t ) ) I0 )V  v {01MF(C~fc~(t)) (2.14) 

Hence, by the density superket 

IpF(t) ) = JF(~fo,(t)) rPoF) (2.15) 

where PoF = PO)vv (01 describes the ground state of the free field. 
Useful properties of ./eLF(t) are 

.~ (~ fo l ( t ) )  = JOLT l(~fc~(t)) = J[F(--~fd(t))  (2.16) 

~/~F(fcl, l ( t ) )  ~{F(fcl .2(/))  = J{F(fcl,  l ( t )  + f~l,2(t)) (2.17) 

Ot ~g(f~,(  t) ) = (1/ih )[ JClF(fd( t) ), LOF] (2.18) 

Finally, the J/[F(O~fcl(t)) superoperator is extended to the atom-field 
problem as 

.~/~ S( O~ f cl ( t ) ) = 1 A @ ~/~ F( O~ f cl ( t ) ) (2.19) 

2.3. Disentangling the Quasiclassical Field Excitation from the 
Rest of the Problem 

With the initial condition sketched above, and a weak a tom~e ld  
coupling, we anticipate that the field will remain for a long time close to 
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the quasiclassical state (2.14), even during and after the overlap between 
pulse and atom; hence, the system will be close to a density superket of the 
type 

Ipa(t) | MF(t) PoFMtF(t) ) = Jgs(t) Ip•(t) | POF) 

This suggests using the unitary transformation /d ts ( t ) - -~s- l ( t )  to 
"remove" the coherent field excitation from the density superket in an 
attempt to simplify the dynamical problem. For this purpose, we define 
"bar"-transformed versions of the quantum objects as 

lAx(t) ) = Jc/*s(t) lAx(t) ) = IM*s(t) As(t) Ms(t)  ) 

(Bs(t)l  = (Bs(t)l  J~x(t) 
(2.20) 

for any superket IAs(t)) and superbra (/Ts(t)[, and 

f~(t) = ~ i ( t )  xx(t) ~s(t) (2.21) 

for any superoperator ~,Us(t ) involving the single time t. 
If the density superket Ips(t)) evolves according to the usual von 

Neumann equation of motion 

(~?/~?t) Ips(t) ) = (1/ih) L s Ips(t) ) (2.22) 

with the Liouvillian superoperator (2.6), then the corresponding bar-trans- 
formed density superket Ips(t)) evolves according to 

(a/at) I~x(t)> = ( 1 / i h ) [ L s + 2 ( 6 L s ( t ) - 6 L s ) ]  ItSx(t)) (2.23) 

When only the terms linear in the field are retained in the atom-field 
coupling [see (2.4)], the term 2 ( 6 L s ( t ) -  6Ls) appearing in (2.23) takes the 
very simple form of a superoperator proportional to the magnitude ~ of the 
quasiclassical field excitation, acting nontrivially in the atomic state space 
only: 

2(6Ls(t) - 6Ls) = 2C~A(t) | IF (2.24) 

and a similar situation prevails in the traditional presentation of quantum 
mechanics: 

x(Ps( t )  - vx) = ,~  wA(t)  | 1~ (2.25) 

with 

~A(t)---- W,~(t)x 1A-- 1A x WA(t) (2.26) 
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The superoperator f ) ( t )  is exactly the perturbing Liouvillian that would 
be used to describe the atom-field coupling in semiclassical models in 
which the atom is described quantum mechanically and the field classically. 
Combining (2.6), (2.23), and (2.24), we can rewrite the equation of motion 
for I/Ss(t)) under the form 

(8/Ot) Iris(t)) = (1/ih)ELos + 2c~KA(t) | I F +  2~SLs] Ips(t)) (2.27) 

Note that the transformations leading to (2.27) are exact and that the rhs 
of this equation of motion still contains the complete atom-field coupling 
26Ls in addition to the semiclassical, time-dependent term (2.24). 

2.4. Realistic Initial Condit ions 

Whenever the unperturbed classical field C~fcl(r, t) is exactly zero in the 
region of space occupied by the atom, the semiclassical term (2.24) is also 
exactly zero. This will be the case for all times t i during the initial idle 
period of our model; hence, the equation of motion for Ir is 

(a/st,) t ~ ( t , ) )  = (l/ih) L~ F~( t , ) )  (2.28) 

When the initial idle period is also one of rest (apart for the free 
propagation of the quasiclassical excitation of the field) then, during this 
period, fps(t~))= [fiin~ts) is time-independent and one can show that the 
quantum average energy is given by 

~ H s )  = {Hs lPs ( t , ) )  = ( H s ]  J0init S ) =  (Hs l  fiinit s )+~2~hOOk ]~k] 2 
k 

(2.29) 

where the last term in the rhs of (2.29) is the energy of the unperturbed 
quasiclassical excitation of the field. For a given c~fc~(t), the time-indepen- 
dent solution of (2.28) with the lowest possible quantum average energy is 
provided by the ground state ]G)s of the Hamiltonian Hs: 

]Pinlt S> = IPGS> = I(FG>ss<GI)) (2.30) 

We can now undo the bar transformation and obtain 

Ips(ti) ) = ~s( t i )  JP~s) (2.31) 

This is a dynamical initial situation which is an exact solution of the 
yon Neumann equation of motion during the whole initial idle period, 

822/48/5-6-24 
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describing an atom in its dressed ground state and an approaching quasi- 
classical excitation of the field. This is the initial condition that will be used 
in the present paper. 

2.5. The Energy Superoperator  o~r 

Besides the Liouvillian (2.5), we shall make extensive use of a second 
superoperator similarly constructed from the Hamiltonian Hs: the "energy 
superoperator" ~s ,  which is defined as 

~ s  = �89 x l s + l s x Hs) (2.32) 

and has the following properties: 

(a) 

(b) 

(c) 
(d) 
(e) 

It is Hermitian, ~ s  =-X~ts - 

Hs [ l s ) = [ H s )  and ( l s l  Jt~s=(Hsl; hence, ( H s ) = ( H s l P s ) =  
(1 s[ ~ s  I Ps) ,  which explains the name "energy superoperator." 

(~s)"  I l s ) =  [ (Hs ) ' )  for any positive integer n. 

It commutes with the Liouvillian, [ ~ s ,  Ls] = 0. 

The lowest eigenvalue of SCgs is the same as the lowest eigenvalue 
of the Hamiltonian Hs, and the corresponding "eigensuperket" is 
IPGs) (after suitable normalization, assuming a nondegenerate 
eigenstate for Hs). 

It is worth noting that the properties (a)-(e) above would not specify 
Ws completely, and that superoperators satisfying properties (a)-(d) above 
may have eigenvalues lower than the ground state of the Hamiltonian. 

2.6. Standard Perturbat ive Approach for Short  Times, 
Weak  Coupling k, and Arbi t rary  Excitat ion Strength ha 

The equation of motion (2.27), together with the initial condition 
(2.30), can be solved for time intervals much shorter than the radiative 
lifetimes by ordinary perturbative techniques in which 2 is used as a small 
expansion parameter, whereas 2a is treated as a finite quantity (by suitably 
letting ~ tend to infinity when )~ tends to zero). At zeroth order in 2 
(denoted by a superscript zero in parentheses), the initial condition is fac- 
torized between atom and field quantum spaces, ]fiinits)~~ 
I (I 1 ) AA ( 11 ) ) A | I P0F), and this property persists for all times, 

Ips(t) ) (~ = I~At)) (~174 IPoF) (2.33) 

with the reduced atom density superket [a~(t))  (~ obeying the usual 
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equation of motion of the semiclassical model (Bloch equations without 
relaxation): 

(a/#t) [aA(t)} (~ ---- (1/ih)[Lo,~ + 2e~/CA(t)] I~rA(t) } (~ (2.34) 

As discussed at length in Ref. 5, great care must be taken in such a pertur- 
bative scheme when the average value of an observable (denoted K s here) 

( K s ) U )  = ( K s l P s ( t ) )  = ( f 2 s J f s ( t ) )  (2.35) 

is expanded as a power series in 2, because the bar transformation of the 
observable may introduce factors e that behave as 2-1. For instance, the 
evaluation of the average value of the contribution 1A@Hoe to the 
Hamiltonian (2.1) to order zero in 2 requires the evaluation of Ips( t ) )  up 
to order one in 2. 

At order one in 2, the resulting description of the coupled atom-field 
system closely resembles the usual "Maxwell-Bloch" scheme of quantum 
optics. 

However, an attempt to understand the radiative effects also over long 
times, entirely from first principles, by pursuing such a perturbative scheme 
systematically to higher orders in 2 would lead (at best) into forbidding 
complications. In the next sections, we briefly show on a few examples how 
the star-unitary transformations introduced by I. Prigogine and his co- 
workers provide an effective tool for the discussion of such effects over any 
time scale. 

To conclude this presentation of our model, we stress that the conven- 
tional picture of the field as a collection of "particles" (photons) is most 
inadequate in the present case of a short quasiclassical pulse of radiation. 
Even for a single mode of the field, the correlations between eigenstates of 
the field Hamiltonian are the main feature of quasiclassical states (see, e.g., 
Ref. 9, p. 284). In the present case of a field pulse, the localization of the 
disturbance in a comparatively small region of space is furthermore also 
the result of large systematic correlations involving all the field modes. If 
one treats the pulse excitation of the atom in the limit of small 2 and small 
2c~ (Born approximation, keeping only terms up to order 22 in the formal 
solution of the equation of motion), the disturbance of the atom appears as 
directly related to these correlations in the field state, and not to the 
occupation probability of the various eigenstates of the free field 
Hamiltonian. 

3. D I S E N T A N G L I N G  E X C I T A T I O N  A N D  R E L A X A T I O N  
T H R O U G H  S T A R - U N I T A R Y  T R A N S F O R M A T I O N S  

In the present section, we briefly recall the scheme involving star- 
unitary transformations (referring the reader to the literature for details; 
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see, e.g., Refs. 1-3, 7, and 8) and show how we have used it for the model 
described in the previous section. The approach will still be a perturbative 
one, with the strength 2 of the atom-field coupling treated as a small 
expansion parameter, keeping the excitation strength ,~e constant and 
finite. However, time intervals (after the onset of the excitation) will no 
longer be required to be short. The new feature is the "thermodynamic 
limit," i.e., the limit of a very large system, which is used from the very 
beginning in the definition and construction of the transformation A. In the 
present model, only the size of the "box" enclosing the field tends to 
infinity, whereas the atom remains unique and the quasiclassical field 
always causes the same excitation. 

3.1, Definition of Suitable Transformations A(L) 

For any superoperator K(L) depending upon the Liouvillian L, the 
star-transform is defined as 

/~*(L) = [ K ( - L ) ]  ~ (3.1) 

The essential property of the transformation A(L) that we shall use is its 
star-unitarity: 

A(L) A*(L) = A*(L) A(L) = 1 (3.2) 

Transformed versions of superkets, superbras, and superoperators will be 
denoted by a superscript p: 

A* [A ) = IA )v, (BI A = P(B[, A * Y A  = PS( (3.3) 

Combining (3.2) and (3.3), we have 

(B] S IA)=P(BI P~ ]A) p (3.4) 

It is worth noting that, in general, A(L) is not unitary, hence P(AI is not 
the superbra corresponding to IA)P. 

The p-transformed version of the equation of motion (2.27) can be 
w r i t t e n  a s  4 

(a/at) I~s(t)>P=(1/ih)[PLs+A~P~s(t)] [~Ss(t)> p (3.5) 

where 

Iris(t) / ~p = A* [tSs(t)) = A*.~g~(t) [ps(t)) (3.6) 

4 The  supe rope ra to r  PLs is deno ted  �9 in mos t  papers  on this topic. 
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Further properties of A(L)  are as follows: 

(a) A and A* are adjoint symmetric: if A = A  t, [A)P=  
A* rA) = [B), and P(A[ = (A[ A =  (CI, then B = B  ~ and C = C .  

(b) When 2 ~ 0, then A(L)  ~ 1 and A*(L)  ---, 1. 

(c) If we denote by [a, b )  = ] ( [ a ) ( b [ ) )  the elements of a superbasis 
constructed with the eigenstates la )  of the unperturbed 
Hamiltonian H o s = H o A |  1F+ IA|  such that Hos [a) = 
he). [a), then 

P(1 ra, b)  = ( l l  A la, b) =fi~,b P( 1 [a, a )  

(a,  bl l )  p :  (a,  b[ A* [ 1 ) =  ~5~,b(a, a] 1) p 
(3.7) 

(a, b[ P ~  Jc, d )  = (a, bl A * ~ A  Ic, d )  =6a,~b,a(a, b] P ~  [a, b )  (3.8) 

The main tool for constructing useful transformations with the above 
properties is provided by the relation 

H (v) = AP(V)A* (3.9) 

valid for all eigenvalues hv = hooa- h~% of the unperturbed Liouvillian Los , 
where the H (v) and p(v~ are two complete sets of orthogonal superprojec- 
tors (which are identical in the limit 2 ~ 0). The set P(~)is defined by 

P(~)=-(1/2rti)f~ dz ~ la, b)(a, bl l / (z-Lo) Ic, d ) (c ,d  I (3.10) 
v)  a , b , c , d  

where the symbol (v) means that the integration has to be performed on a 
clockwise contour surrounding the singularity at z = hv only. This leads to 

P ~ ) =  Res.=h,, ~ ]a, b ) ( a ,  b] 1 / ( z - L o )  pc, d ) ( c ,  d[ 
a , b , c , d  

= ra, b ) ( a ,  bl 
a,b;(co a --  co b = v)  

(3.11) 

where the last summation is only over the pairs a, b for which co a - o )  b --v. 
In the case of a discrete system, the 2-dependent superprojectors H (~) can 
easily be defined by replacing L o by L and the unperturbed energy differen- 
ces by the exact energy differences in the above expression for p(v). Such an 
expression can be written as a Taylor expansion in 2, which, in turn, is the 
starting point for the extension to systems where the thermodynamic limit 
leads to a continuous spectrum, hence to problems of analytical 
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continuation. In all that follows, the superprojectors H (') will be defined 
only in the framework of perturbation expansions, 5 i.e., as 

H(~)=Res~=h~+i~, ~ la, b>(a,b[1/(z-Lo) 
a,b,c,d 

• f [6L/(z-Lo)]" [c,d><c,d] (3.12) 
n = 0  

where e' means, with e > 0, that, when computing the residue, z has to be 
replaced by (hv + ie) in certain propagators and by (by-is)  in the others, 
according to a well-defined rule (see, e.g., Refs. 3 and 12). The well-defined 
character of this rule requires the definition of the degree of correlation of 
superstates ha, b> and a theorem in dynamics of correlations. We refer to 
the literature for more details and only want to point out here that, 
whereas the vacuum of correlation is usually defined as the set of 
superstates la, a> corresponding to the eigenvalue v = 0  of Lo, in the 
problem considered here one must add to this set all the superstates ]a, b> 
corresponding to the Bohr frequencies of the bare atom, (13) v•= (oJi-coj). 
When this is done, an n-correlated state [a, b> is such that n different 
boson frequencies appear in (o~-(~b)-  

With A (~), C (v), D (v), and Z (~') defined by 

A~V)= P~)HO')P ~v) (3.13) 

CI")A(V) = (1 - p c , ) )  H(,)p(v) (3.14) 

A(V)D (v) = P(~)H(~)(I - P(~)) (3.15) 

)~(~) = PO')AP(~), Z *(v) = P~)A*P (~) (3.16) 

relation (3.9) leads to a class of star-unitary transformations such that 

(1 - P(~)) AP (~)= C("))~ ~) (3 .17)  

P~)A*(1 - P(')) = Z*(~)D (v) (3.18) 

with the following condition on X (~) and Z*('): 

)~(~)g*(~) = A (~) (3.19) 

Note that this condition only provides a link between X (~) and Z *(~). For  
this class of star-unitary transformations, the supplementary requirements 
(3.7) and (3.8) lead to conditions on the )(~) that are still not sufficient to 

5 Nonperturbative constructions of H (') have been found in some extremely simple cases (see 
Ref. 3, especially Appendix F, and Refs. 10 and 11). 
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determine these superoperators completely. This problem will be discussed 
at length in further publications. We point out here that some useful 
properties can nevertheless be established. 

First of all, it is possible (~4) to show that the real quantities 

hF~ = i(a, al p L s [a, a)  (3.20) 

hOa= (a, alP ,~# S la, a> (3.21) 

are identical for all star-unitary transformations satisfying (3.7)-(3.9). 
Moreover, with the short-hand notation i for/{Ok}, at least up to order 24 
(at arbitrary order in 2 for two-level systems and for a three-level system 
within the RWA), one can show that hf2~ and Fg are identical with the 
Lamb-shifted energy h ~  and inverse lifetime /~ obtained in the Green's 
function formalism (see, e.g., Ref. 15, Chapter 8). More precisely, if q+(z) 
denotes the analytical continuation from above of the function r/g(z)= 
[<i] 1 / ( z - H ) [ i > ]  -~, then h(~,- i f f~/2)  is the root of the equation 
r/,.+(z) = 0 that is identical to hco~ when 2 = 0. 

3.2. Equation of Mot ion for Transformed Quantities 

The above results are still "static" results (time is not involved). To 
discuss dynamical aspects, it appears interesting to consider, rather than the 
global evolution of leSs(t)) p, the evolution of its various projections 
p(v) ifis(/))p" It can be shown that (3.5) leads to 

(0 /0 t ) [P  (v) IL~(t))p] = (1/ih) ;~ y, [p~v) p~( t )  p(v,)] [p (v , ) j t~ ( t ) )v ]  
v' 

+ (1//h)l-P (v) PLsP(V)][P (~) [ fs( t ) )  v] (3.22) 

The fact that the second term in the rhs involves only p(v)]fiS(l))p ' in 
contrast with the first one, which involves all the projections p(v,)]~Os(t))p, 
is a consequence of (3.9), the commutation relation [ H  (~), L]  --0, and the 
orthogonality property p(v)p(~') = 6v.~, p(v) 

For all times ~ for which the unperturbed field excitation does not 
overlap the atom (this includes the initial idle period), only the second 
term (in PLs)  in the rhs of (3.22) is different from zero and (3.22) takes the 
simple form 

(O/~r)l-P (~) I f s ( r ) )  p] = ( l / /h) [P  (v) PLsP(~)][P (~) Jfs(z))  p] (3.23) 

of separated equations of motion for each projection [P(V)]fs(r))P].  In 
contrast, during the excitation period (i.e., during the overlap of the unper- 
turbed field excitation with the atom), the term in P~Ws(t ) in (3.22) mixes all 
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the "subdynamics" (see the summation over all v'). With the choice of 
transformations made in the present paper, this mixing is an essential 
feature of the excitation period. 

In his work on the evolution of a system under the action of an exter- 
nal time-dependent force, Coveney ~6) obtained the same kind of result: the 
action of the external field mixes the various subdynamics; in contrast with 
his work, we shall not attempt to look for transformations that would 
restore this decomposition. 

To go further, we mention that, as a consequence of the diagonality 
condition (3.8) for PiP and of the commutativity of J f  and L, we can show 
that 

~a, alPLslb, b)ocb(f2a-f2b) for a r  (3.24) 

For times ~ such that there is no overlap between the unperturbed 
field excitation and the atom, this means that the evolution is governed by 
Pauli-like equations, 

(~?/~3~)(a, al/Ss(V)} p = (1/ih) ~ (a, al p Ls Ib, b)(b,  blC3s(Z))P (3.25) 
b 

More specifically, at lowest nonvanishing order in )v, we have, e.g., for 
a#b,  

(1/ih)(a, ak p Ls qb, b) t~  ?,,b = 22 I(a] Vs Ib)l 2 (2rc/h 2) cf(coa- cob) (3.26) 

and 

(1/ih)(a, al p Ls la, a)  (~ - 7 ,  = - ~ '/,,b (3.27) 
b ( # a )  

where the above relations define the rates 7a,b and 7c,. 
If we restrict ourselves to interactions that do not introduce level 

crossings (i.e., such that f2~<f2 b if c%<cob) and use the short-hand 
notation {Ok} to denote the ground state of the free field (all nk equal to 
zero), then (3.24) and the fact that 71(o~} = 0 imply that 

(a, alPLsl l{Ok}, l{Ok})=O for all a (3.28) 

As a consequence, for r = ti in the initial idle period, the relations 

P( l l  1 {Ok), l{Ok)>(l{Ok), l{Ok) Ifis(t,)> p= 1 
(3.29) 

<a, blps(te) )P=O forall (a,  bl#(l{Ok),l{Ok)L 

imply that the p-transformed superket 

I~s(t~)> p= tl {0~), 1 {0a-)>(P(11 l{0k), 1{0~)>)-'  (3.30) 
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is a stationary solution of (3.23) to all orders in 2, with the proper nor- 
malization for describing the state of a physical system: 

1 = ~ 1 l ps(t)  ) = ( 1 Iris(t))  = P( 1 ]/~s(t) ) p (3.31) 

Combining (3.6), (3.7), the limit property A ~ 1 when 2 ~ 0 ,  and the 
remark leading to (2.33), it is obvious that, at order zero in 2, the 
expressions (3.30) and (2.31) describe exactly the same state of the coupled 
atom-field system. The question, however, arises of this equivalence at 
arbitrary order in 2. If there is only one "stable" situation for a given 
approaching pulse of radiation, the answer must be yes, if the whole 
scheme is consistent. Using the general properties that define the A trans- 
formation, we have been able to prove that the p-bar transform of (2.31) is 
indeed (3.30) up to order 22 , and we have many indications that the proof 
will extend to higher orders. 

4. R E D U C I N G  TO S M A L L  S U B S P A C E S  AFTER THE A A N D  J~ 
T R A N S F O R M A T I O N S  

As usual in statistical physics, reducing to small subspaces is a power- 
ful tool in the present context when the relevant observables act non- 
trivially only in such subspaces and the hierarchy of equations of motion 
for the corresponding reduced distribution functions (more exactly 
"reduced density superkets") can be truncated in the framework of a 
systematic perturbation scheme. 

4.1. Reduced Density  Superkets 

The subspaces used here explicitly are the subspace of the bare atom 
(denoted A) and the subspace of the bare atom and the single mode k of 
the field (denoted Ak). Other interesting subspaces would involve the bare 
atom and a finite list of field modes, or field modes only. In all cases, the 
reduction takes place by the superspace version of "taking a partial trace 
over the subspace that is eliminated in the reduction," Using a notation for 
eigenstates of the unperturbed Hamiltonian in which i and j label the 
eigenstates of the bare atom, nk stands for an eigenvalue of a~ak and {. } 
denotes the set of all field modes, the relevant reduced density superkets 
can be defined by the following expressions for their components: 

A~i, j l ~ ( t ) ) A =  ~ s~ i {n~} , j {nk}]~s ( t ) )~  (4.1) 

Ak ( inx, jn21(T Ak( t ) ) Ak 

= Z s( ink{nk'} , jn 'k{nk'}[ f is( t ) )}  (4.2) 
{,,k'}(k' ~ k) 
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In the case of the initial condition of our model [using version (3.30) of 
this dynamical state], the atom reduced density superket takes the very 
simple form 

Io-~>A = I(11 > ~  <11)>., G < I  I l { 0k } ,  l { 0 , } > s )  -~ (4.3) 

and all reduced density superkets involving one or more field modes are 
exactly zero. 

The asymptotic behavior of various objects for large volumes ~ 
accessible to the field is an important property in the present scheme in 
which the transformation A itself is also defined in the limit of large "U. The 
fact that the initial condition (3.30) involves the ground state of the field, 
together with the dependence in ~-~/= of the matrix elements of the 
atom-field coupling Liouvillian 6Ls, imply, with n = ~k nk and n ' =  ~k n~,, 
that 

s( i{nk }, j{n'k } } ~s(t) >Ps= O(IU - u, +,,')/2) (4.4) 

Using a notation in which n~ is not written when it is equal to zero and k 
itself is written when nk = 1, we can express a first consequence of (4.4) as 

A{i, j la ,~(t))A=S(i ,  jtpx(t))Ps + ~ (l/r!) 
r ( r~>l )  

x ~ { i k ~ . . . k , , j k , . . . k , l ~ s ( t ) ) v s + O ( ~  -~) 
k t  " " ' k r  

(4.5) 

4.2. Evo lu t ion  of  IGA(T)) w i t h o u t  I r rad ia t ion  

A second consequence is that, for all times r for which the unperturbed 
field excitation does not overlap the atom, and in the limit of large volume 
~ ,  the reduced density superket [in the sense of (4.1) and (4.2)] for a sub- 
system involving the atom and a finite number of field modes has an 
equation of evolution that involves only the reduced density superket itself 
and more strongly reduced density superkets for subsystems involving the 
atom and some of these field modes. In other words, there is no hierarchy 
of equations, hence no need to truncate it, in this regime. In the par- 
ticularly simple case of the atom reduced density superket, the equation of 
motion can be written as the following closed system of differential 
equations for the components of IcrA(~)}A (assuming for simplicity that all 
Bohr frequencies of the atom are different): a set of coupled equations for 
the "diagonal" (i, i) elements, 
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(a/Ot) A(i, iJ aA(~))A 

= (1/ih) s(i, il PLs Ii, i )s  A( i, il aA(~))A 

+ (1//h) Z Z E 
r(r >1 1 ) k l  - �9 - kr j(ogj > o9i) 

X s ( i k l ' " k r ,  ikx"'kr] PLslJ, J)s,4(J, jI~A('O)A (4.6) 

and separated equations for each "nondiagonal" (i # j )  element, 

( ~ / ( ~ r )  A ( i ,  f i l q A ( ' r ) ) A  = (1/ih) s(i, fi] PL S ]i,j) s A(i, jlCYA(r))A (4.7) 

Equation (3.28) implies that (1, I[PLs [1, 1 ) =  0; hence, only the second 
term remains in the rhs of (4.6) for the ground state i =  1, while, due to 
Eq. (3.24), only the first term in the rhs of (4.6) remains for the highest 
excited state. 

Some useful properties of the matrix elements appearing in the above 
equations are 

(1lib) s(i, il PLs Ii, i )s  

= --3`2"yi = -- (2TC//~2) 3`2 2 2 I I ) i , / k l 2 ( ~ ( 6 O i - - O ) i - - O g k ) + O (  3`4 ) (4.8) 
k /(co~< ~i) 

(1/ih) ~ s ( i k , . . . k , , i k , . . . k , . lPLs[ j , j ) s=O(3`  zr) (4.9) 
j( w: > ,-oi ) 

(1/ih) s(ik, ikl PLs l J, J )s  

=227ik, j=(2rc/h2) 22 Ivi~.j]26(~/+o#-(,o:)+O(24) (4.10) 

(1lib) s(i,j] PLs li, j ) s  

= -i(r + 3. 2 cSQ i - cO: - 22 bf2j) - 3`2[(7, + 7i)/2] + 0(3. 4) (4.11 ) 

The set of equations (4.6)-(4.7) has the exact structure of the expected 
Bloch equations with relaxation (in the absence of irradiation), describing 
the systematic flow from high- to low-lying eigenstates of HOA, and the 
independent behavior of each nondiagonal component A (i, jlrYA('C))A with 
its oscillation at the Lamb-shifted Bohr frequency and its decay. 

It is worth noting that the present derivation of the "irreversible" 
equations of motion (4.6)-(4.7) only uses the thermodynamic limit (i.e., 
volume W'--, oo), which is inherent in the A-transformation scheme, and 
the initial condition (3.30). No assumptions about short or long time inter- 
vals were involved, no "small terms" were neglected during the derivation, 
and limited expansions in powers of the small strength 2 of the atom-field 
coupling were used only in the final evaluation of the constants appearing 
in the equations. 
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4.3. Evolut ion of  ]c%(t)) dur ing a Shor t  Pulse of  I r radiat ion 

With the choice of transformations and reductions made in the present 
paper, the evolution during the overlap of the unperturbed field excitation 
with the atom is much less simple and one is faced with the usual hierarchy 
of equations involving reduced density superkets for subspaces with 
increasing number of field modes. We now indicate how this hierarchy can 
be truncated by a perturbation scheme in which the duration of the 
excitation period (i.e., of the overlap) and the irradiation strength 2e 
are treated as finite constants, whereas the strength 2 of the atom-field 
coupling (when it is not multiplied by ~) is used as a small parameter in 
power series expansions. 

Using the formal iterative solution of the evolution equation and the 
initial condition (3.30), we see that the introduction of r bosons requires 
the use of the superoperator )o 6Ls (either in A, A*, or PLs) at least r times; 
hence, we have 

s(  ik~ ... kr, jk'~ .,.  k',., ] ps(t) )Ps oc 2" + "' (4.12) 

and similar relations for the elements of the reduced density superkets for 
subspaces involving field modes. As a result of this, the limitation of series 
expansions in powers of 2 to the first few terms is equivalent to a 
corresponding truncation of the hierarchy. Note that the present discussion 
of orders of magnitude in )~ holds only because we consider the duration of 
excitation as a constant, so that the relevant "small" values of 2 correspond 
to "large" values of the radiative lifetimes (which are of order 2-2), much 
larger than the duration of excitation. If the durations of interest were of 
the order of the radiative lifetimes or longer, a different perturbation 
scheme would be required. 

At order zero in 2, the presence of a nonzero term 2c~ P'~s(t) in the 
equation of motion (3.5) for l~s(t)) v manifests itself in the equations of 
motion (4.6)-(4.7) for laA(t)) as an additional contribution to the rhs of 
the form (for i =  j as well as i4= j) 

;tc~( l/ih) { ~  G~,~,(t) A( i,, j l a  A(t) ) ~-- ~ Gj~,j(t) A( i, j l l a  A(t) ) (4.13) 

where the irradiation is completely described by the complex functions of 
time 

Gi~,jl(t)=[Gj~,i~(t)] .... = ~  {C~k(t) vil,j,k+c~ck'~ (4.14) 
k 

At this very primitive level of discussion, the equations and results corre- 
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spond to the usual semiclassical approximation (2.34) and the hierarchical 
structure does not show up yet. 

At order one in the series expansion of P~s(t) in powers of 2, a further 
contribution has to be added to the rhs of (4.6)-(4.7), of the form (for i =  j 
as well as i C j ,  and in the limit ie--* 0, e > 0 )  

Z(2~)(l/ ik) t [Ni.i~,(t , iz) E E Ak(ilk'jlGAk(t))Ak 
k l i~ 

+ Na,,,(t ,  ie) .... A, ( i,, j k l a  A,(t) ) A*] 

h 

Nj,/,,(t,  ie) .... Ak ( i, JI k [a  A,(t) ) Ak] l (4.15) + 
J 

where the complex functions Ni~.j~,(t , ie) are given by 

N h /lk(t, ie) = ~ {vij,,,kG,,,j,(t)[I/(eoi~ -- con,- co k + ia)] 
m 

+ 6, , , , , I f)  v m , , ,  E 1/(~oj, + co, - co,,, - i~)] } (4.16) 

and the analog of (4.5) is 

A,(i~k,j~l~rAk(t))A,=s(ilk, jllfis(t))~+ ~ (I/r!) 
rfr>~ ~1 

x ~ s ( i l k k l . . . k r ,  j ~ k a . . . k ,  l f is( t ))P (4.17) 
k l  �9 �9 k r  

Eq. (4.12) shows that (4.17) is O(2), hence (4.t5) is 0(22). If the con- 
tribution (4.15) to the r.h.s, of (4.6)-(4.7) is kept, the consistency of the 
whole perturbation scheme implies that all the other contributions of the 
same order in 2 must also be included, namely contributions arising from 
P~//s(t) at order 22 and contributions in 22 arising from the terms which are 
already present in the absence of irradiation. However, such corrections do 
not lead to an extension of the hierarchy and will not be discussed here any 
further. 

In the typical fashion of hierarchical structures, (4.15) has to be sup- 
plemented with information about reduced density supcrkets for subspaces 
involving the atom and one field mode. We recall that these are all exactl E 
zero in the initial condition. After some calculations, the following equation 
of motion is obtained: 
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= [(~ /e t )  Ak~J, i k l ~ A k ( t ) } A k ]  .... 

- - ~  Gjl, j(t) AX( ik, Jl l aAk(t) )Ak t 
Jl ) 

+ 2()~)(1/ih) Z [N,,,,k(t, --ie)] .... A(i~, j] (TA(I)),4 + O(~3) (4.18) 
il 

in which the contributions of order ,~3 contain reduced density superkets 
for subspaces involving the atom and two field modes, hence extending the 
hierarchy when terms of order higher than 2 2 are required for the descrip- 
tion of the effect of the pulse. 

When the techniques indicated here are used to express the relevant 
reduced density superkets immediately after a short pulse of irradiation in 
terms of the same superkets immediately before the pulse as a power series 
in 2, two quite distinct "small parameters" appear: the strength 2 of the 
atom-field coupling and the combination ~2 At, which is proportional to 
the ratio of the duration At of the pulse to the radiative lifetime [which is 
O(I-2)]. Combining the results outlined in this subsection and in the 
previous subsection, we can make clean and systematic predictions about 
the reduced density superkets of the type IoA(t)), Io,~k(t)) ..... for 
experiments involving a small number of short pulses with arbitrary 
separations between the pulses. For this, the time intervals with and 
without irradiation are treated separately and the approximate reduced 
density superkets evaluated at the end of each time interval are used as an 
initial condition for the next time interval. Great care has to be taken to 
ensure the overall consistency of such a scheme in which different types of 
approximations are used in successive time intervals. The resulting density 
superkets are much needed intermediates for the calculation of the 
"few-field modes" reduced density superkets, which, in turn, are needed to 
make predictions of the same quality about the directly observable 
photoelectric detection of light. 

4.2. Observables and Average Values 

In the traditional presentation of quantum mechanics, one is led to 
associate superkets of the type 

s(Qs[ = A(qAI @ F( 1FI (4.19) 

where Qs and qA are Hermitian operators, with "observables" involving 
the atom only. For instance, A(qAI ---- A((li)A A(i[)t for the population of 
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the eigenstate ]i) A of H0A and ~ (qA I = ~ ( ( ] i )  A A (J])l for the "correlation" 
between eigenstates [i)A and ] j )~.  Under these conditions, the evaluation 
of the average value 

(Qs)( t )=s(QslPs(t))s=s(qA@lglps( t )~s=~(qAJp~(t)~,~ (4.20) 

of such observables only requires the knowledge of the atom reduced 
density superket 

[pa(t))A=~ ~, [i,j)A s(i{nk},j{nk)lps(t)~s (4.21) 
i,j {nk) 

The presence of radiation has no direct influence on the average values of 
such observables and, for instance, either s(Qsl or fps(t))s or both can be 
replaced by their bar-transform (2.20) in (4.20). 

However, the object of actual interest is usually not the simplified 
fiction of a "bare atom," but rather the complex structure resulting from 
the permanent interaction of this bare atom with the electromagnetic field. 
Both objects coincide only in the limit 2 --, 0, so that average values of the 
type (4.20) do not provide the expected simple and satisfactory tool for 
discussing radiative effects in atomic physics. 

In the presentation of quantum mechanics outlined in this section, and 
for situations in which the field is very close to the quasiclassical state 
(2.15), the reduced density superket [aA(t)) A given by (4.1) offers a 
description of the dynamical behavior of the atom that incorporates the 
radiative effects in a particularly simple way. This leads to the tempting 
conjecture that average properties of "dressed atoms" would be given by 
expressions of the type 

( Bs)(t) = A(bA l aA(t))~ (4.22) 

in which, for instance, A(bAI would be proportional to A((Ii)A A(i[)l for 
the population of the dressed atomic state i, and proportional to 
A(([i)A A(jl)[ for the "correlation" between dressed states i and j. Using 
the definition (4.1) of la~(t)) A and relation (3.4), we see that (4.22) can 
hold if the superbra s(Bs[ is such that its p-bar transformed version has 
the form 

P(Bs[ -= A(bAI Q F( IF[ i4.23) 

because this implies that 

(Bs)(t)  = s(BslPs( t ) )s= P(Bsl ~s(t)) p 

= (A(bAI @ F(IFI)  IPS(t ) )  p 

= Z  A(bAtZj)A Z (A(i, j I |  {nk}I)]Ps(t))~ 
ZJ {~k} 

-~ A(bA I O'A(T))A (4.24) 
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In the limit 2 ~ 0, the conditions (4.19) and (4.23) are equivalent and the 
reduced superkets defined by (4.1) and (4.21) are equal. When 2 differs 
from zero, one must keep in mind that the definition of 1~TA(t)) n involves 
the nonunitary transformation A, with the consequence that [GA(t))  A does 
not have all the usual properties of a conventional density superket. For 
instance, the example of (4.3) clearly shows that ~( i  a laA(t))~ is different 
from 1 in general; hence, the diagonal matrix elements of the Hermitian 
operator aA(t) cannot be directly interpreted as occupation probabilities. 
In spite of these difficulties, we have indications that, for real atoms, the 
conjecture (4.22) will provide more satisfactory predictions than the rough, 
"bare atom" method (4.19). However, a number of consistency checks 
should still be performed before taking (4.22) seriously or even more 
sophisticated versions of it [involving, for instance, the replacement of 
laA(t))~ by a properly normalized variant and a suitable association of 
superbras ~ (hAl with "observable" properties in order to mitigate some of 
the difficulties]. Whatever the result of these checks, the average values of 
"observables involving one real atom only" (i.e., not the field.) will 
presumably remain of heuristic interest because these average values 
cannot be measured directly (i.e., independently of the field). Our view is 
that clear comparisons between predictions and observations should use 
measurements of properties of the field performed at large distances from 
the atom. In such cases, we expect that reduced density superkets of the 
type  I~TA(t)) ~ will play a role only as intermediates in the calculations of 
the field properties. We plan to investigate this idea in detail and we hope 
to report on it later. 
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